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Background
� For high speed flows simulations with large material distortions either the pure 
Eulerian or Arbitrary Lagrangian Eulerian (ALE) numerical methods can be used. 

� For Inertial Confinement Fusion (ICF) simulations the governing equations are 
supplemented with source terms representing the diffusion of energy across material 
boundaries. 

� The equations are solved numerically using operator splitting, with the diffusion 
terms treated separately from the hydrodynamics stage. 

� Numerical methods based on Support Operators can be used to solve the 
diffusion equation but assume that the grid is aligned with the material boundaries. 

� For ALE or Eulerian meshing the grid will not be, in general, aligned with the 
material boundaries. 

� Cells that overlap material boundaries will contain more than one material 
component; known as a mixed cell. 

� For diffusion, the most general approach is to treat pure and mixed cells alike. 
However, need to construct a dual polygonal mesh around the different materials. 
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Governing Equations
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∂� For multi-material flow we wish to solve 
Partial Differential Equations with diffusive 
energy source term:-

� The system is solved numerical using 
operator splitting thus:-
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� First step is the “homogeneous” Hydro step

� Second step is the Energy Diffusion Step
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� Calculation setup with different materials.

� Material boundaries reconstructed using Volume of Fluid (VoF) Youngs’
interface reconstruction.

� Material’s have distinct properties

� Pure and Mixed cell components have distinct properties.

Solution Strategy (1/4)
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� Governing equation for mth Component are integrated over time ∆t and 
corresponding polygonal volume Vm
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Solution Strategy (2/4)
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� α indicates time centering used for temperature sub-cycling

� α=0 (semi-implicit)

� α=1/2 (Picard)

� α=1 (full-implicit)
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� Compute dual mesh that contains pure and mixed cells

� Polygons

� Number of faces 

� Connectivity to its neighbours

� Inter-cell and Intra-cell values 

� Material Centroids

� Inter-cell and Intra-cell lengths

� Creates connectivity array that is unstructured
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Solution Strategy (3/4)
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Solution Strategy (4/4)

mmm RuA =+1

� Solve as backward Euler system of implicit equations

� Number of unknowns N = npure+ nmixed_components

� Linear system of equations 

� is a sparse N*N matrix,        is the column vector of unknown 
temperatures and        is the column vector for the right hand side, m is the 
iteration count

� Temperature iterated until convergence

� Use HYPRE IJ (CSR format) due to unstructured nature of dual mesh

� LLNL Library

� Solver: Conjugate Gradient (CG)

� Preconditioner: BoomerAMG (AMG) 
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� Homogenise “average” mixed cells to produce “pseudo”pure cells

� Geometric simple than multi-material scheme

� No need to compute dual mesh

� Neighbours remain fixed but data changes

� Matrix row and columns have fixed position but entries change

� Need for sub-cell improvements in mixed cells after main solve

� “Solving the diffusion equation on a non-aligned mesh”, Computers and 
Fluids, May 2013

Alternative Approach
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Sub-cell: Homogenized Model (HS)
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� Averaged temperature         can be given to all mixed components

� Instantaneous temperature equilibrium

� For consistency with the underlying energy equation the energy 
update follows the form,

� Component values not          but will eventually converge (few
steps) to a single value.
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Sub-cell: Gradient Based Model (GBM)

� Component temperatures are perturbed to maintain local energy conservation 
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� For N components there is one equation for N unknowns. For two components a 
gradient based model can be adopted. For this we make the assumption that the 
internal mixed cell profile has the form (component 2 is related to 1):

� ∆Tα is the temperature change across the mixed cell based upon using the 
surrounding cells that bracket it.
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Sub-cell: Flux Based Models (1/2)

� Gradient Based Model does not account for exchange of energy 
into mixed cell and within it.

� Energy update has to be consistent with underlying homogenized 
scheme

� Neumann BCs – prescribed fluxes (FBM)

� Inter-cell Fluxes same as those from homogeised scheme

� Energy conservative but method can be unrobust�

� Dirichlet BCs – prescribed temperatures

� Mixed cell assumed to be bathed in local temperature bath

� Non-conservative energy as inter-cell fluxes different to 
homogenised values �
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Sub-cell: Flux Based Models (2/2)

� Dirichlet BCs – prescribed temperatures

� Mixed cell bathed in surrounding temperature bath

� Compute updated component energy and scale

� Scaled Energy Model 1 (FBMSE1)

� Scaled Energy Model 2 (FBMSE2)
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RESULTS

� HS: Homogenized Model

� GBM1: Gradient Based Model 1 (α ∈[0,1])

� GBM2: Gradient Based Model 2

� FBM: Flux Based Model

� FBMSE1: Flux Based Model with Scaled Energy 1

� FBMSE2: Flux Based Model with Scaled Energy 2

� MMS: Multi-Material Scheme
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1D: Linear Diffusion
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1D: Linear Diffusion
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1D: Linear Diffusion
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1D: Linear Diffusion



© British Crown Copyright 2013 19 of 34

1D: Linear Diffusion
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1D: Linear Diffusion
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1D: Linear Diffusion

� GBM1, GBM2 and FBMSE1 performed poorly against MMS

� Models will not be considered any further
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1D: Non-Linear Diffusion
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1D: Non-Linear Diffusion
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1D: Non-Linear Diffusion

� FBM failed for fL = 0.999999

� Model will not be considered any further
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2D: Cylindrical Linear Diffusion
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2D: Cylindrical Linear Diffusion
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2D: Cylindrical Linear Diffusion
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2D: Cylindrical Linear Diffusion
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2D: Cylindrical Non-Linear Diffusion
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2D: Cylindrical Non-Linear Diffusion



© British Crown Copyright 2013 31 of 34

2D: Cylindrical Non-Linear Diffusion
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2D: Cylindrical Non-Linear Diffusion
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2D: Cylindrical Non-Linear Diffusion
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Conclusions

� A multi-material scheme for diffusion was presented

� Necessary to compute on unstructured dual mesh (Polygons)

� Additional geometric complexity, but best approach to capture 
inter-cell and intra-cell energy diffusion across material interfaces

� An alternative approach based on homogenization was presented

� Several sub-cell models were described that aim to correct for 
the homogenization energy error

� Using simple test problems a process of elimination was used to
identify the “best” sub-cell model relative to the multi-material scheme

� Homogenization error will always limit the sub-cell model accuracy

� Multi-material scheme does not suffer from this 


